
COINES Documentation

Bosch Sensortec

CC BY-SA 4.0



Table of contents

41. Introduction

62. Acessing the sensor on Application Board using C and SensorAPI

62.1 Introduction to COINES

72.2 Working Principles

93. Installation

93.1 System requirements

103.2 Installation (Windows)

123.3 Installation (Linux / MacOS)

134. Quickstart

134.1 Compiling and executing code (command line)

144.2 Cross compiling and downloading example to Application Board's microcontroller

154.3 Eclipse project for examples

215. coinesAPI description

215.1 Overview of PC side implementation of COINES

225.2 GPIO Mapping

245.3 coinesAPI calls

366. Extending the usage of the example files

366.1 Simple data logging

376.2 Data plotting and visualization

387. Media Transfer Protocol (MTP) firmware for Application Board 3.0

387.1 Media Transfer Protocol (MTP) firmware for Application Board 3.0

427.2 Switching to MTP mode

437.3 Copying the files using MTP

448. USB/BLE DFU bootloader

448.1 USB/BLE DFU bootloader

458.2 Key Features

468.3 Invoking the Bootloader

478.4 Using the Bootloader via USB

488.5 Using the Bootloader via BLE

499. Updating Bootloader, DD firmware and MTP firmware using COINES

499.1 Updating bootloader

509.2 Updating DD firmware

519.3 Updating MTP firmware

5210. Accessing the Application Board using Python

5210.1 Introduction to coinespy library

Table of contents

- 2/61 - CC BY-SA 4.0



5210.2 Installation

5310.3 coinespy API description

5310.4 coinespy API calls: Interface and board information

5310.5 coinespy API calls: GPIO oriented calls

5410.6 coinespy API calls: Sensor communication

5510.7 Definiton of constants

5710.8 Error Codes

5810.9 Migration from 'GenericAPI' to coinespy

5911. FAQ

5911.1 I want to upgrade APP2.0/APP3.0 firmware.

5911.2 Why GCC is chosen as the compiler?

5911.3 Why do you use TDM-GCC in Windows?

5911.4 Why do you use mingw32-make in Windows?

5911.5 What to do in case of any communication or initialization failure while running examples?

5911.6 What does 'app_switch' tool do?

5911.7 Are libraries provided by microcontroller vendor used for COINES on MCU implementation ?

5911.8 How is the binary file from PC downloaded to RAM or Flash memory of MCU?

60

11.9 Why is there no output in my terminal application not stream data after cross-compiling and downloading an example

on the MCU?

6011.10 Why some examples can only be compiled for either PC or MCU target?

6112. Legal disclaimer

6112.1 Engineering samples

6112.2 Product use

6112.3 Application examples and hints

Table of contents

- 3/61 - CC BY-SA 4.0



1. Introduction

Bosch Sensortec offers a toolkit for evaluation of it’s sensor products.The toolkit consisting of 3 elements:

A sensor specific shuttle board also known as breakout board. APP3.0 shuttle boards also known as mini shuttle boards has smaller

form factor when compared with APP2.0 shuttle board.

APP2.0 shuttle board

app3.0 shuttle board

Application Board has a connector for the shuttle board and serves as interface translator from the sensor interface (I2C or SPI) to

a USB interface, allowing PC software to communicate with the sensor on the shuttle.

1. 

1. 

1. Introduction

- 4/61 - CC BY-SA 4.0

https://www.bosch-sensortec.com/software-tools/tools/application-board-3-0/


Application Board 2.0

Application Board 3.0

On the PC side, Bosch Sensortec provides the software packages Development Desktop 2.0 and COINES to connect to the sensor

on the Application Board.

Development Desktop 2.0 provides a GUI which allows to configure the sensor, plot and export streamed sensor data.

COINES provides a C based interface, which allows to communicate with the sensor using the SensorAPI from Bosch Sensortec on

the PC side.

Starting from COINES v2.0, user has an option to cross-compile the example and run it directly on the Application Board’s

microcontroller.

1. 

• 

• 

• 

1. Introduction

- 5/61 - CC BY-SA 4.0



2. Acessing the sensor on Application Board using C and SensorAPI

2.1 Introduction to COINES

COINES ("COmmunication with INertial and Environmental Sensors") provides a low-level interface to Bosch Sensortec’s

Application Board. The user can access Bosch Sensortec’s MEMS sensors through a C interface. COINES can be used with

SensorAPI of the sensor. SensorAPI is available at https://github.com/BoschSensortec. The source code of example applications

and SensorAPI are provided with the COINES library as a package. The user can modify, compile and run the sample

applications.

COINES can be used to see how to use the SensorAPI in an embedded environment and allows convenient data logging.

The full working environment consists of:

A Bosch Sensortec MEMS sensor on a shuttle board mounted on the socket of Bosch Sensortec’s application board APP2.0/

APP3.0

Windows or Linux PC to which the Application Board is connected via USB

COINES software release as found here: http://www.bosch-sensortec.com

C compiler is also required (details see below)

• 

• 

• 

• 

2. Acessing the sensor on Application Board using C and SensorAPI

- 6/61 - CC BY-SA 4.0

https://github.com/BoschSensortec
http://www.bosch-sensortec.com


2.2 Working Principles

2.2.1 Running examples on PC side

When compiling the examples for PC side, the COINES layer provides an abstraction of the embedded environment on the host

side. COINES library provides read and write functions for I2C and SPI on PC side. These functions receive the arguments of the

user input (i.e. what register address to read from) and tunnel them through the USB connection to the Application Board, where

they are fed into the embedded I2C and SPI functions and are executed to access the sensor Any result or response from those

functions is tunneled back to the PC side and provided to the example application

This approach allows easy and flexible programming and offers the possibility to integrate the example code into other

applications or add advanced logging options The drawback is that in this mode the code is not exected in real time, as it runs on

a multi-tasking operating system To overcome this drawback, the examples can also be run on the MCU side (see next section).

Application Board

firmware.fwu2

Shuttle board

Sensor

PC (host)

example.exe

example.c

SensorAPI

COINES API

WinUSB, libUSB, BST
USB

Text is not SVG - cannot display

Working principle: running example on PC side

2.2 Working Principles

- 7/61 - CC BY-SA 4.0



2.2.2 Running examples directly on the MCU of the Application board

The examples can also be cross-compiled on PC side and downloaded into the memory of the Application board and executed

there. The user can choose to download the created binary into the flash memory or into the RAM (if the binary is not too big)

Important is, that the example is placed in a location in the flash memory other than where the default firmware is stored The

example is executed with a specific command, allowing to jump to the start address of the complied example from the default

firmware As the firmware itself is not overwritten, the board always returns to its default state after a power-off-power-on cycle

In this configuration the COINES layer provides a simple abstraction on top of the MCU BSP (i.e. board level support layer of the

microcontroller) Any printf command will now not output to the console, but rather to the USB connection, which appears as

virtual COM port on PC side

This mode allows to also perfom many time-critical operations on the sensor, such as fast reading of FIFO content at high data

rates.

PC (host)

Terminal Program

Virtual COM port

Application Board

firmware.fwu2

Shuttle board

Sensor

example.bin

SensorAPI

COINES API

USBMCU BSP

Text is not SVG - cannot display

Working principle: running example on the MCU of the Application

Board

2.2.2 Running examples directly on the MCU of the Application board

- 8/61 - CC BY-SA 4.0



3. Installation

3.1 System requirements

COINES should be usable on any recent PC or laptop system which has at least a performance as an “office PC”. The hardware

should provide a USB 2.0 interface.

COINES can run on recent versions of Windows and Linux.

Tested with following Operating Systems:

Windows 7,10

Debian based - Ubuntu 14.04, 16.04, 18.04, Debian Jessie/Stretch

Redhat based - CentOS 7 ,Fedora 27 

Raspbian (Raspberry Pi 3 hardware)

• 

• 

• 

• 

3. Installation

- 9/61 - CC BY-SA 4.0



3.2 Installation (Windows)

3.2.1 Installation of COINES

Download the lastest version of COINES from Bosch Sensortec's website in the "Downloads" section

Run the Installer

Accept the End User License Agreement and click Next

Click Install to start Installation

Click Start --> All programs --> COINES --> examples --> respective sensors to view examples

3.2.2 Installation of compiler environment

COINES C examples can be built using GNU C compiler (GCC). There are various distributions of GCC. TDM-GCC is easy to

install and hence preferred for COINES. TDM GCC is based on MinGW GCC.

If you have already installed GCC (MinGW/Cygwin/MSYS2 GCC) and added to 'PATH' environmental variable, you can skip

compiler installation.

Download the TDM32/TDM64 bundle (link). Use TDM32 bundle if your Windows OS is 32-bit and TDM64 bundle if 64-bit.

Start the Installer. Ensure that the option Check for updated files on the TDM GCC server is unchecked. Click Create and proceed

with the installation.

If you intend to do run the COINES example on Application Board's microcontroller, install the latest version of GNU Embedded

Toolchain for ARM for Windows. Make sure you have checked 'Add path to environmental variable'

TDM-GCC installation dialog

• 

• 

• 

• 

• 

1. 

2. 

3. 

3.2 Installation (Windows)

- 10/61 - CC BY-SA 4.0

http://tdm-gcc.tdragon.net/
https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/downloads
https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/downloads


GNU ARM Toolchain installation

3.2.2 Installation of compiler environment

- 11/61 - CC BY-SA 4.0



3.3 Installation (Linux / MacOS)

3.3.1 Installation of COINES

Download the installer. Use the command cd  to go to the directory where the installer is located and make the installer

executable:

chmod +x coines_vX.Y.sh

Ensure that you are connected to the Internet before running the installer, which is executed like this:

./coines_vX.Y.sh

Accept the End User License agreement

The installer will prompt you if the required dependencies/packages are not installed. (This step requires root privileges.)

3.3.2 Installation of compiler environment

On a Debian or Redhat based Linux distro, the installer prompts for installation of missing dependencies, gcc , make  and libusb-

dev  packages. If due to some reason installation fails,the user can manually install the dependencies.

Debian based distros - gcc , make , libusb-1.0-0-dev , dfu-util

Redhat based distros - gcc , make , libusbx-devel , dfu-util

MacOS - libusb , dfu-util

If you intend to run the COINES example on Application Board's microcontroller, download the latest version of GNU Embedded

Toolchain for ARM for Linux and extract the package. Add the compiler to PATH variable by editing $HOME/.bashrc  or similar file

like /etc/profile  or /etc/environment .

• 

• 

• 

• 

• 

• 

• 

• 

• 

3.3 Installation (Linux / MacOS)

- 12/61 - CC BY-SA 4.0

https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/downloads
https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/downloads


4. Quickstart

4.1 Compiling and executing code (command line)

Connect the Application Board board via USB, with the sensor shuttle board mounted.

Open the command prompt or the terminal.

Use the command cd  to go to the directory where the example that is to be built is located.

Type ' mingw32-make ' (TDM-GCC/MinGW) or ' make ' (Linux/Cygwin/MSYS2/MacOS)

Run the example and see the output.

1. 

2. 

3. 

4. 

5. 

4. Quickstart

- 13/61 - CC BY-SA 4.0



4.2 Cross compiling and downloading example to Application Board's microcontroller

Make sure that GNU Embedded Toolchain for ARM is installed on your PC and added to evironmental variable PATH

Connect the Application board via USB, with the sensor shuttle board mounted.

Open the command prompt or the terminal.

Use the command cd  to go to the directory where the example that is to be built is located. 

Type mingw32-make TARGET=MCU_APP20 download 1. Other available options are:

Cross-compile for APP2.0 board:

mingw32-make TARGET=MCU_APP20

Download example to APP2.0 MCU RAM:

mingw32-make LOCATION=RAM TARGET=MCU\_APP20 download

Download example to APP2.0 MCU FLASH:

mingw32-make LOCATION=FLASH TARGET=MCU\_APP20 download

Download example to APP3.0 MCU RAM:

mingw32-make LOCATION=RAM TARGET=MCU\_APP30 download

Download example to APP3.0 MCU FLASH2:

mingw32-make LOCATION=FLASH TARGET=MCU\_APP30 download

Compile for PC (Default):

mingw32-make TARGET=PC

Run an example already residing in APP2.0 Flash memory:

mingw32-make run

Use a Serial Terminal application to view output.

Windows - PuTTY, HTerm,etc.,

Linux - cat  command. Eg: cat /dev/ttyACM0

macOS - screen  command. Eg: screen /dev/tty.usbmodem9F31

For bluetooth, use Serial Bluetooth terminal.

Note:

Some examples may not compile for both PC and MCU target. Please refer to the example documentation or simply the

example name (e.g. examples that can only be compiled for the PC are named with a following '_pc').

The binary on the MCU will be executed once the serial port is opened. The port must be opened including DTR signal set,

otherwise the binary will not be executed. Some terminal programs such as HTerm allow explicit setting of the DTR signal.

For printing over APP3.0 bluetooth interface, use fprintf(bt_w,...)

Linux/MacOS/Cygwin/MSYS2 users can use make

Downloading COINES example to APP3.0 Flash memory will overwrite default firmware. 

1. 

2. 

3. 

4. 

5. 

• 

• 

• 

• 

• 

• 

• 

6. 

• 

• 

• 

7. 

• 

• 

• 

1. 

2. 

4.2 Cross compiling and downloading example to Application Board's microcontroller

- 14/61 - CC BY-SA 4.0

https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/downloads
https://play.google.com/store/apps/details?id=de.kai_morich.serial_bluetooth_terminal


4.3 Eclipse project for examples

Open Eclipse

Click File --> New --> C/C++ Project

Input Project name --> Uncheck use default location --> Provide the location of the example folder

Select Executable --> Empty project in Project type 

For Windows, Select MinGW GCC as Toolchain

For Linux, Select Linux GCC as Toolchain 

• 

• 

a. 

b. 

c. 

d. 

4.3 Eclipse project for examples

- 15/61 - CC BY-SA 4.0



Eclipse C Project for Windows

4.3 Eclipse project for examples

- 16/61 - CC BY-SA 4.0



Eclipse C Project for Linux

In Project Explorer window, Right click on the project created --> Click Properties --> C/C++ Build --> Tool Chain Editor -->

Select Current builder as Gnu Make Builder

Again click on C/C++ Build

For Windows, Uncheck "Use default build command"  and type build command as mingw32-make

Uncheck generate Makefiles automatically 

Ensure Build location path is chosen from the workspace

Click Apply and Close button

• 

• 

a. 

b. 

c. 

d. 

4.3 Eclipse project for examples

- 17/61 - CC BY-SA 4.0



Windows Eclipse Project Properties

4.3 Eclipse project for examples

- 18/61 - CC BY-SA 4.0



Linux Eclipse Project Properties

4.3.1 Build project

In Project Explorer window, Right click on the project --> Click Build Project. The executable file will be generated.

4.3.2 Debug project

Click on Run -> Debug As -> Local C/C++ Application

Once launching is completed, Click on 

Resume button to run the application

Terminate button to stop running the application

• 

• 

a. 

b. 

4.3.1 Build project

- 19/61 - CC BY-SA 4.0



Eclipse Debug Configuration

4.3.2 Debug project

- 20/61 - CC BY-SA 4.0



5. coinesAPI description

5.1 Overview of PC side implementation of COINES

Bosch Sensortec recommends using the SensorAPI in order to communicate with the sensors. The SensorAPI , an abstraction

layer written in C makes it much more convenient for the user to access the register map of the sensor in order to configure

certain functionality and obtain certain information from it.

For making use of the SensorAPI, three function pointers must be set to the appropriate read/write functions of the selected bus

on the system (either I\textsuperscript{2}C or SPI), as well as one function pointer to a system's function causing delays in

milliseconds.

In order to execute C code using SensorAPI on a PC, the coinesAPI provides the mentioned read,write,delay functions. These

functions are wrapper functions, embedding the actual SensorAPI payloads into a transport package, sending this via USB to the

APP2.0, where the payload is translated into corresponding SPI or I\textsuperscript{2}C messages and sent to the sensor on the

shuttle board. The mapping would look similar to the one below.

Using this method, the full functionality of the SensorAPI can be used on PC side, sample code can be modified and tested, and

data can be logged in a convenient way.

This setup has the challenge of lacking the real-time capabilities known from a pure microcontroller environment. To overcome

this, the coinesAPI offers streaming functions, which allow the user to schedule data readout directly on the microcontroller,

either based on a data interrupt coming from the sensors or based on the timer of the microcontroller. The scheduler waits for

the configured interrupt (sensor interrupt or timer interrupt) and reads out areas of the register map, which can be configured

by the user.

As an example, the user could choose to read out the 6 bytes from the register map of a certain inertial sensor, containing the

sensor data of three axis (2 bytes per axis). If the user would configure for example a readout once per milliseconds, the result

would be a data stream of three-axis sensor data at a rate of 1 kHz.

#include "bst_sensor.h"

struct bst_sensor_dev sensordev;
....
....
sensordev.dev_id = I2C_ADDR; // SPI - CS PIN
sensordev.read = coines_read_i2c; // coines_read_spi
sensordev.write = coines_write_i2c; // coines_write_spi
sensordev.delay_ms = coines_delay_msec;

5. coinesAPI description

- 21/61 - CC BY-SA 4.0



5.2 GPIO Mapping

5.2.1 GPIO mapping of APP2.0 shuttle board pins

The APP2.0 shuttle board has total 28 pins, of which some have a predefined functionality and some can be used as GPIO by the

user.

The shuttle board connector details are given in the table below.

Note:

In coinesAPI the pins are addressed using the same numbers as on the shuttle board. For example, the GPIO #5 has the pin

number 8.

In some cases (depending on the sensor), the I2C lines are shuttle board pin 6 for the clock signal SCL and shuttle board pin 5

for the data line SDA. In such cases pins 17 and 18 may not be connected. Please carefully read the shuttle board

documentation.

Pin number on shuttle board Name / function Pin number on shuttle board Name / function

1 VDD (3.3V) 28 SHTLE_COD #4

2 VDDIO (3.3V) 27 SHTLE_COD #3

3 GND 26 SHTLE_COD #2

4 SPI MISO 25 SHTLE_COD #1

5 SPI: MOSI / I2C: SDA 24 SHTLE_COD #0

6 SPI: SCK / I2C: SCL 23 SHTLE_COD_GND

7 SPI: CS 22 IO_4 ( GPIO #4 )

8 IO_5 ( GPIO #5 ) 21 IO_7 ( GPIO #7 )

9 IO_0 ( GPIO #0 ) 20 IO_6 ( GPIO #6 )

10 SHTLE_COD #5 19 IO_8 ( GPIO #8 )

11 SHTLE_COD #6 18 SCL (see note)

12 SHTLE_COD #7 17 SDA (see note)

13 SHTLE_COD #8 16 IO_3 ( GPIO #3 )

14 IO_1 ( GPIO #1 ) 15 IO_2 ( GPIO #2 )

• 

• 

5.2 GPIO Mapping

- 22/61 - CC BY-SA 4.0



5.2.2 GPIO mapping of APP3.0 shuttle board pins

The APP3.0 shuttle board has a total of 16 pins, 7 on the left and 9 on the right.(with shuttle board pins facing downwards)

Note:

In coinesAPI the pins are addressed as on the APP3.0 shuttle board. For example, the GPIO #5 is addressed as 

COINES_MINI_SHUTTLE_PIN_2_6 .

Supported VDD voltages on APP3.0 board are 0, 1.8V and 2.8V.

Supported VDDIO voltage on APP3.0 board is 1.8V.

Pin number on shuttle board Name / function Pin number on shuttle board Name / function

1_1 VDD (1.8/2.8V) 2_1 SPI_CS

1_2 VDDIO (1.8) 2_2 SPI: SCK / I2C: SCL

1_3 GND 2_3 SPI: MISO / I2C: SDO

1_4 GPIO0 2_4 SPI: MOSI / I2C: SDA

1_5 GPIO1 2_5 GPIO4

1_6 GPIO2 2_6 GPIO5

1_7 GPIO3 2_7 IOXP_INT

2_8 PlugDet

2_9 EEPROM_RW

• 

• 

• 

5.2.2 GPIO mapping of APP3.0 shuttle board pins

- 23/61 - CC BY-SA 4.0



5.3 coinesAPI calls

5.3.1 coinesAPI calls: Interface and board information

coines_open_comm_intf

Opens the communication interface. Currently only COINES_COMM_INTF_USB  (USB Connection) interface is available. 

COINES_COMM_INTF_BLE  is available for MCU_APP30  target.

In case of MCU Target, API waits indefinitely for serial port or BLE connection ( MCU_APP30  target only).

In order to use fprintf  and fscanf  with BLE, intf_type  should be COINES_COMM_INTF_BLE

coines_close_comm_intf

Closes the communication interface.

coines_get_board_info

Gets the board information.

The data structure contains the following items 

int16_t coines_open_comm_intf(enum coines_comm_intf intf_type,void *arg);

int16_t coines_close_comm_intf(enum coines_comm_intf intf_type,void *arg);

int16_t coines_get_board_info(struct coines_board_info *data);

struct coines_board_info {
/*!Board hardware ID */
uint16_t hardware_id;
/*!Board software ID */
uint16_t software_id;
/*!Type of the board like APP2.0, Arduino Due*/
uint8_t board;
/*!Shuttle ID of the sensor connected*/
uint16_t shuttle_id;

};

5.3 coinesAPI calls

- 24/61 - CC BY-SA 4.0



5.3.2 coinesAPI calls: GPIO oriented calls

coines_set_pin_config

Sets the pin direction and the state.

coines_get_pin_config

Gets the pin configuration.

coines_set_shuttleboard_vdd_vddio_config

Configures the VDD and VDDIO of the sensor. For APP2.0, a voltage level of 0 or 3300 mV is supported. Any values above 0 will

default to 3300 mV.

int16_t coines_set_pin_config(enum coines_multi_io_pin pin_number, enum coines_pin_direction direction, enum coines_pin_value pin_value);

int16_t coines_get_pin_config(enum coines_multi_io_pin pin_number, enum coines_pin_direction *pin_direction, enum coines_pin_value *pin_value);

int16_t coines_set_shuttleboard_vdd_vddio_config(uint16_t vdd_millivolt, uint16_t vddio_millivolt);

5.3.2 coinesAPI calls: GPIO oriented calls

- 25/61 - CC BY-SA 4.0



5.3.3 coinesAPI calls: Sensor communication

coines_config_i2c_bus

Configures the I2C bus. 

The first argument refers to the bus on the board. Currently, on APP2.0, there is only one bus available, so the argument is

always COINES_I2C_BUS_0 .

The following I2C modes are available: 

coines_config_spi_bus

Configures the SPI bus of the board. The argument coines_spi_bus refers to the bus on the board. On APP2.0, there is only one

bus available, so the user should only use COINES_SPI_BUS_0 . The SPI speed can be chosen in various discrete steps, as defined in

enum coines_spi_speed in coines.h. (For example, COINES_SPI_SPEED_2_MHZ  sets the SPI speed to 2 MHz.)

coines_config_i2s_bus

This API is used to configure the I2S bus to match the TDM configuration

Arguments:

data_words : number of words to use in the buffer. Max is set at COINES_TDM_BUFFER_SIZE_WORDS .

callback : register a callback to be called to process and copy the data.

coines_deconfig_spi_bus

This API is used to de-configure the SPI bus

coines_deconfig_i2c_bus

This API is used to de-configure the I2C bus

coines_deconfig_i2s_bus

This API is used to stop the I2S/TDM interface from reading data from the sensor

int16_t coines_config_i2c_bus(enum coines_i2c_bus bus, enum coines_i2c_mode i2c_mode);

COINES_I2C_STANDARD_MODE
COINES_I2C_FAST_MODE
COINES_I2C_SPEED_3_4_MHZ
COINES_I2C_SPEED_1_7_MHZ

int16_t coines_config_spi_bus(enum coines_spi_bus bus, uint32_t spi_speed, enum coines_spi_mode spi_mode);

int16_t coines_config_i2s_bus(uint16_t data_words, coines_tdm_callback callback);

• 

• 

int16_t coines_deconfig_spi_bus(enum coines_spi_bus bus);

int16_t coines_deconfig_i2c_bus(enum coines_i2c_bus bus);

void coines_deconfig_i2s_bus(void);

5.3.3 coinesAPI calls: Sensor communication

- 26/61 - CC BY-SA 4.0



coines_write_i2c

Writes 8-bit register data to the I2C device at COINES_I2C_BUS_0 .

Arguments:

bus : I2C bus to be used

dev_addr : I2C device address.

reg_addr : Starting address for writing the data.

reg_data : Data to be written.

count : Number of bytes to write.

coines_read_i2c

Reads 8-bit register data from the I2C device at COINES_I2C_BUS_0 .

Arguments:

bus : I2C bus to be used

dev_addr : I2C device address.

reg_addr : Starting address for reading the data.

reg_data : Buffer to take up the read data.

count : Number of bytes to read.

coines_write_spi

Writes 8-bit register data to the SPI device at COINES_SPI_BUS_0 .

Arguments:

bus : SPI bus to be used.

dev_addr : Chip select pin number.

reg_addr : Starting address for writing the data.

reg_data : Data to be written.

count : Number of bytes to write.

coines_read_spi

Reads 8-bit register data from the SPI device at COINES_SPI_BUS_0 .

int8_t coines_write_i2c(enum coines_i2c_bus bus,uint8_t dev_addr, uint8_t reg_addr, uint8_t *reg_data, uint16_t count);

• 

• 

• 

• 

• 

int8_t coines_read_i2c(enum coines_i2c_bus bus,uint8_t dev_addr, uint8_t reg_addr, uint8_t *reg_data, uint16_t count);

• 

• 

• 

• 

• 

int8_t coines_write_spi(enum coines_spi_bus bus,uint8_t dev_addr, uint8_t reg_addr, uint8_t *reg_data, uint16_t count);

• 

• 

• 

• 

• 

int8_t coines_read_spi(enum coines_spi_bus bus,uint8_t dev_addr, uint8_t reg_addr, uint8_t *reg_data, uint16_t count);

5.3.3 coinesAPI calls: Sensor communication

- 27/61 - CC BY-SA 4.0



Arguments:

bus : SPI bus to be used.

dev_addr : Chip select pin number.

reg_addr : Starting address for reading the data.

reg_data : Buffer to take up the read data.

count : Number of bytes to read.

coines_config_word_spi_bus

Configures the SPI bus parameters speed, mode, 8-bit/16-bit transfer ( COINES_SPI_TRANSFER_8BIT  / COINES_SPI_TRANSFER_16BIT  ).

coines_write_16bit_spi

Writes 16-bit register data to the SPI device at COINES_SPI_BUS_0 .

Arguments:

bus : SPI bus to be used.

cs : Chip select pin number.

reg_addr : Starting address for writing the data.

reg_data : Data to be written.

count : Number of bytes to write.

coines_read_16bit_spi

Reads 16-bit register data from the SPI device at COINES_SPI_BUS_0 .

Arguments:

bus : SPI bus to be used.

cs : Chip select pin number.

reg_addr : Starting address for reading the data.

reg_data : Buffer to take up the read data.

count : Number of bytes to read.

coines_delay_msec

Introduces delay in millisecond.

coines_delay_usec

Introduces delay in microsecond.

• 

• 

• 

• 

• 

int16_t coines_config_word_spi_bus(enum coines_spi_bus bus, enum coines_spi_speed spi_speed, enum coines_spi_mode spi_mode, enum coines_spi_transfer_bits
spi_transfer_bits);

int8_t coines_write_16bit_spi(enum coines_spi_bus bus, uint8_t cs, uint16_t reg_addr, void *reg_data, uint16_t count);

• 

• 

• 

• 

• 

int8_t coines_read_16bit_spi(enum coines_spi_bus bus, uint8_t cs, uint16_t reg_addr, void *reg_data, uint16_t count);

• 

• 

• 

• 

• 

void coines_delay_msec(uint32_t delay_ms);

void coines_delay_usec(uint32_t delay_us);

5.3.3 coinesAPI calls: Sensor communication

- 28/61 - CC BY-SA 4.0



5.3.4 coinesAPI calls: Streaming feature

Note:

The below APIs are supported only on PC Target.

A simpler approach of using coines_attach_interrupt()  API for is available for MCU.

coines_config_streaming

Sets the configuration for streaming sensor data.

Arguments:

channel_id : An integer number that can be used as identifier/index to the sensor data that will be streamed for this setting

stream_config : Contains information regarding interface settings and streaming configuration.

coines_streaming_blocks : Contains information regarding numbers of register blocks, range and size of each block.

Note:

The below parameters should always be set:

data_block.no_of_blocks : number of blocks to stream (must at least be one)

For each block b:

data_block.reg_start_addr[b] : start address of the block in the register map

stream_block.no_of_data_bytes[b] : number of addresses to read, starting from the start address

For reading data from I2C bus,then set the below parameters:

stream_config.intf = COINES_SENSOR_INTF_I2C;

stream_config.i2c_bus : I2C bus (in case of APP2.0, this is always COINES_I2C_BUS_0 )

stream_config.dev_addr : I2C address of the sensor

For reading data from SPI bus, then set the below parameters:

stream_config.intf = COINES_SENSOR_INTF_SPI;

stream_config.spi_bus : SPI bus (in case of APP2.0, this is always COINES_SPI_BUS_0 )

stream_config.cs_pin : CS pin of the sensor, information can be obtained from the shuttle board documentation for the sensor. 

When polling mode is requested, set the below parameters: - stream_config.sampling_units :

either milliseconds ( COINES_SAMPLING_TIME_IN_MILLI_SEC )

or microseconds ( COINES_SAMPLING_TIME_IN_MICRO_SEC ) - stream_config.sampling_time : sampling period in the unit as defined in 

stream_config.sampling_units

When interrupt mode is requested, set the below parameters:

stream_config.int_pin : pin of the interrupt which shall trigger the sensor read-out. If the interrupt output of the sensor is used,

the required information about the pin number can be obtained from the shuttle board documentation for the sensor.

stream_config.int_timestamp : it can be configured if the sensor data is tagged with a timestamp ( COINES_TIMESTAMP_ENABLE ) or

not ( COINES_TIMESTAMP_DISABLE ).

coines_start_stop_streaming

Starts or stops sensor data streaming.

• 

• 

int16_t coines_config_streaming(uint8_t channel_id, struct coines_streaming_config *stream_config, struct coines_streaming_blocks *data_blocks);

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

5.3.4 coinesAPI calls: Streaming feature

- 29/61 - CC BY-SA 4.0



Arguments:

stream_mode : streaming mode (either COINES_STREAMING_MODE_POLLING  or

COINES_STREAMING_MODE_INTERRUPT )

start_stop : flag to either start ( COINES_STREAMING_START ) or stop ( COINES_STREAMING_STOP ) the streaming

coines_read_stream_sensor_data

Reads the data streamed from the sensor.

Arguments:

sensor_id : id of the sensor 

number_of_samples : number of samples the user wishes to read (not implemented)

data : data buffer

Interrupt streaming - Packet counter + Register data + Timestamp

Polling streaming - Register data

valid_samples_count : number of samples the user has actually received (may be less than number_of_samples )

Example of a packet:

Format of streaming packages

In the above figure, the following meaning apply to the mentioned abreviations:

rp: Value at register address p

a: Size of register block–0

rp+a: Value at register address p

Similarly is the case for rq, j and rq+j. See the coines_streaming_blocks  structure for information regarding register blocks.

The packet counter and the timestamp can be obtained as follows:

The 48-bit timestamp is enabled by using coines_trigger_timer(COINES_TIMER_START,  COINES_TIMESTAMP_ENABLE);

Timestamp in microseconds can be obtained using below formula:

int16_t coines_start_stop_streaming(enum coines_streaming_mode stream_mode, uint8_t start_stop);

• 

• 

int16_t coines_read_stream_sensor_data(uint8_t sensor_id, uint32_t number_of_samples, uint8_t *data, uint32_t *valid_samples_count);

• 

• 

• 

• 

• 

• 

• 

• 

• 

packet_counter = (byte3_c << 24) | (byte2_c << 16) | (byte1_c << 8) | (byte0_c);
timestamp = (byte5_t << 40) | (byte4_t << 32) | (byte3_t << 24) | (byte2_t << 16) | (byte1_t << 8) | (byte0_t);

\[ Timestamp\ (\mu s) = \frac{48bit\_timestamp}{30}\]

5.3.4 coinesAPI calls: Streaming feature

- 30/61 - CC BY-SA 4.0



coines_trigger_timer

Triggers the timer in firmware and also enables or disables the time stamp feature.

Arguments:

tmr_cfg : start, stop or reset the timer ( COINES_TIMER_START , COINES_TIMER_STOP  or COINES_TIMER_RESET ) 

ts_cfg : Enables/disables microcontroller timestamp ( COINES_TIMESTAMP_ENABLE  or COINES_TIMESTAMP_DISABLE ) 

int16_t coines_trigger_timer(enum coines_timer_config tmr_cfg,enum coines_time_stamp_config ts_cfg);

• 

• 

5.3.4 coinesAPI calls: Streaming feature

- 31/61 - CC BY-SA 4.0



5.3.5 coinesAPI calls: Other useful APIs

coines_get_millis

Returns the number of milliseconds passed since the program started

coines_get_micro_sec

Returns the number of microseconds passed since the program started

coines_attach_interrupt

Attaches an interrupt to a Multi-IO pin.Works only on MCU.

Arguments:

pin_number : Multi-IO pin

callback : Name of the function to be called on detection of interrupt

int_mode : Trigger modes

change ( COINES_PIN_INTERRUPT_CHANGE ),

rising edge ( COINES_PIN_INTERRUPT_RISING_EDGE ),

falling edge ( COINES_PIN_INTERRUPT_FALLING_EDGE )

coines_detach_interrupt

Detaches interrupt from a Multi-IO pin.Works only on MCU.

coines_intf_available

Return the number of bytes available in the read buffer of the interface. Works only on APP3.0 MCU target.

Arguments:

intf : Type of interface (USB, COM, or BLE)

coines_intf_connected

Check if the interface is connected.Works only on APP3.0 MCU target.

Arguments:

intf : Type of interface (USB, COM, or BLE)

uint32_t coines_get_millis();

uint64_t coines_get_micro_sec();

void coines_attach_interrupt(enum coines_multi_io_pin pin_number,void (*callback)(uint32_t, uint32_t),enum coines_pin_interrupt_mode int_mode);

• 

• 

• 

void coines_detach_interrupt(enum coines_multi_io_pin pin_number);

uint16_t coines_intf_available(enum coines_comm_intf intf);

• 

bool coines_intf_connected(enum coines_comm_intf intf);

• 

5.3.5 coinesAPI calls: Other useful APIs

- 32/61 - CC BY-SA 4.0



coines_flush_intf

Flush the write buffer.Works only on APP3.0 MCU target.

Arguments:

intf : Type of interface (USB, COM, or BLE)

coines_read_intf

Read data over the specified interface.Works only on APP3.0 MCU target.

Arguments:

intf : Type of interface (USB, COM, or BLE)

buffer : Pointer to the buffer to store the data

len : Length of the buffer

coines_write_intf

Write data over the specified interface.Works only on APP3.0 MCU target.

Arguments:

intf : Type of interface (USB, COM, or BLE)

buffer : Pointer to the buffer storing the data

len : Length of the buffer

coines_get_version

Returns pointer to COINES version string

coines_soft_reset

Resets the device. After reset device jumps to the address specified in makefile(APP_START_ADDRESS).

coines_read_temp_data

This API is used to read the temperature sensor data.

Arguments:

temp_conv_data : Buffer to retrieve the sensor data in degree Celsius.

void coines_flush_intf(enum coines_comm_intf intf);

• 

uint16_t coines_read_intf(enum coines_comm_intf intf, void *buffer, uint16_t len);

• 

• 

• 

uint16_t coines_write_intf(enum coines_comm_intf intf, void *buffer, uint16_t len);

• 

• 

• 

char* coines_get_version(void);

void coines_soft_reset(void);

int16_t coines_read_temp_data(float *temp_data);

• 

5.3.5 coinesAPI calls: Other useful APIs

- 33/61 - CC BY-SA 4.0



coines_read_bat_status

This API is used to read the battery status.

Arguments:

bat_status_mv : Buffer to retrieve the battery status in millivolt

bat_status_percent : Buffer to retrieve the battery status in percentage

coines_ble_config

This API is used to configure BLE name and power. It should be called before calling coines_open_comm_intf API.

Arguments:

ble_config : structure holding ble name and power details

coines_set_led

This API is used to set led state(on or off).

Arguments:

led : led to which the state has to be set.

led_state : state to be set to the given led.

coines_timer_config

This API is used to configure the hardware timer.

Arguments:

instance : timer instance.

handler : callback to be called when timer expires.

coines_timer_start

This API is used to start the configured hardware timer.

Arguments:

instance : timer instance.

timeout : timeout in microseconds.

coines_timer_stop

This API is used to stop the hardware timer.

int16_t coines_read_bat_status(uint16_t *bat_status_mv, uint8_t *bat_status_percent);

• 

• 

int16_t coines_ble_config(struct coines_ble_config *ble_config);

• 

int16_t coines_set_led(enum coines_led led,enum coines_led_state led_state);

• 

• 

int16_t coines_timer_config(enum coines_timer_instance instance, void* handler);

• 

• 

int16_t coines_timer_start(enum coines_timer_instance instance, uint32_t timeout);

• 

• 

int16_t coines_timer_stop(enum coines_timer_instance instance);

5.3.5 coinesAPI calls: Other useful APIs

- 34/61 - CC BY-SA 4.0



Arguments:

instance : timer instance.

coines_get_realtime_usec

This API is used to get the current counter(RTC) reference time in usec

coines_delay_realtime_usec

This API is used to introduce delay based on high precision RTC(LFCLK crystal) with the resolution of 30.517 usec.

Arguments:

period : required delay in microseconds 

• 

uint32_t coines_get_realtime_usec(void);

void coines_delay_realtime_usec(uint32_t period);

• 

5.3.5 coinesAPI calls: Other useful APIs

- 35/61 - CC BY-SA 4.0



6. Extending the usage of the example files

6.1 Simple data logging

The output data generated by the example files can easily be routed into log files for storing of the data. The following code

sniplet shows what the user would have to do in principle to generate a log file, stored in the current working directory, on each

example execution. The name of the log file is derived from the current time stamp at the time of execution. The code sniplet is

valid for examples compiled for PC side (TARGET=PC, see above). If the example is run on the MCU, the data is provided via

virtual COM port and the user can use any terminal program to access and store the data.

Note that the code snippet does not contain any exception handling, such as checking file overwrite or if fopen returns without

error.

#include <stdio.h>
#include <stdlib.h>

int main(void)
{

FILE *log_fd;
char *logfile = malloc(28);
time_t now;
struct tm *tm;

now = time(0);
tm = localtime(&now);
sprintf(logfile, "logfile_%04d%02d%02d_%02d%02d%02d.log",

tm->tm_year+1900, tm->tm_mon+1, tm->tm_mday, tm->tm_hour, tm->tm_min, tm->tm_sec);
log_fd = fopen(logfile, "w");

...

while(CONDITION)
{

...
bmaXYZ_get_data(&data);
fprintf(log_fd, "%d, %d, %d", data.x, data.y, data.z);

}

fclose(log_fd);
return 0;

}

6. Extending the usage of the example files

- 36/61 - CC BY-SA 4.0



6.2 Data plotting and visualization

When compiling an example to run on MCU (for example TARGET=MCU_APP20, see above), the obtained sensor data can easily

be plotted in the serial plotter of the Arduino IDE.

The example application must print the sensor data to be plotted in a text string, with a terminating new line character. Multiple

sensor values per axis are possible. The printf  command will stream the sensor data in an ASCII string via (virtual) COM port.

Once the user connects to the COM port and opens the Arduino serial plotter, the data will be displayed in a graphical way.

Notes and hints:

If the user wants to use an other plotting software, he must consider that the DTR signal line must be set, otherwise the

flashed application on the application board will not start running. The serial plotter and serial monitor of Arduino IDE set this

signal automatically, other software (like HTerm) have the option to do this manually.

The plotting window offers automatic re-sizing. If the user does not want this and needs fixed limits, he could plot the limits as

additional lines.

Example: printf("\%d \%d \%d\textbackslash n", lower_limit, sensor_data, upper_limit);

In case of sensor data with a high offset, such as the output of a barometric pressure sensor, which is usually around 100000

Pa, the user may want to substract a certain offset, so see details of the signal.

Example: printf("\%d\textbackslash n", (pressure - 99000));

Accelerometer sensor data on Arduino Serial Plotter

• 

• 

• 

6.2 Data plotting and visualization

- 37/61 - CC BY-SA 4.0



7. Media Transfer Protocol (MTP) firmware for Application Board 3.0

7.1 Media Transfer Protocol (MTP) firmware for Application Board 3.0

The external memory chip W25M02/W25N02 on APP3.0 is based on NAND flash.

FAT filesystem on NAND flash memory results in a complicated solution which uses of lot of RAM. Moreover use of FAT without

Flash Translation Layer (to save RAM) wears out NAND flash with frequent usage. Hence the choice of FlogFS, a filesystem

optimized for use with NAND flash.

But the use of FlogFS , presents a new problem 'Filesystem access from PC via USB'. Use of FlogFS  with USB Mass Storage

protocol is not possible because operating system can't recognize FlogFS  as a valid filesystem.

Use of custom protocol to do filesystem operations would mean re-inventing the wheel and a lot of effort. User also would not

have the same experience as with USB Mass Storage.

Solution was to go with the "Media Transfer Protocol" developed initially by Microsoft for Portable Devices like MP3 players.

Starting from Android Kitkat (v4.4),MTP is the only way to access files on an Android device since the whole flash memory

(included user storage space) uses filesystems like ext4, YAFFS, F2FS, etc.,

Files in APP3.0 board's NAND flash memory can be viewed using the USB MTP firmware.

Supported on Windows, Linux, Android (via USB OTG) and macOS

7. Media Transfer Protocol (MTP) firmware for Application Board 3.0

- 38/61 - CC BY-SA 4.0

https://github.com/conservify/FLogFS


7.1 Media Transfer Protocol (MTP) firmware for Application Board 3.0

- 39/61 - CC BY-SA 4.0



7.1 Media Transfer Protocol (MTP) firmware for Application Board 3.0

- 40/61 - CC BY-SA 4.0



7.1 Media Transfer Protocol (MTP) firmware for Application Board 3.0

- 41/61 - CC BY-SA 4.0



7.2 Switching to MTP mode

Connect the Application Board 3.0 using USB cable to PC.

Application Board 3.0 comes with the preloaded MTP firmware update package.

Turn OFF and turn ON the board with T1 pressed. Green LED glows on the board indicating that board switched to MTP

mode.

For reference find the examples in following path COINES\v2.6.0\examples\c\file_handling  and run using below command

mingw32-make TARGET=MCU_APP30 download

• 

• 

• 

• 

7.2 Switching to MTP mode

- 42/61 - CC BY-SA 4.0



7.3 Copying the files using MTP

Connect the Application Board 3.0 using USB cable to PC.

Turn OFF and turn ON the board with T1 pressed.

The device will enumerate as an MTP device with name "Application Board 3.0". Click on it and select the "W25M02 External

Memory"

The device will list all the available files and all required files can be copied.

Copy data log files to the PC over USB MTP

• 

• 

• 

• 

7.3 Copying the files using MTP

- 43/61 - CC BY-SA 4.0



8. USB/BLE DFU bootloader

8.1 USB/BLE DFU bootloader

A USB/BLE Bootloader for APP3.0 Board/nRF52840 chip complying with

https://www.usb.org/sites/default/files/DFU_1.1.pdf

https://infocenter.nordicsemi.com/index.jsp?

topic=%2Fcom.nordic.infocenter.sdk5.v11.0.0%2Fbledfu_transport_bleservice.html

Bootloader can be found in the following path COINES\v2.6.0\firmware\app3.0\bootloader_update

• 

• 

8. USB/BLE DFU bootloader

- 44/61 - CC BY-SA 4.0

https://www.usb.org/sites/default/files/DFU_1.1.pdf
https://infocenter.nordicsemi.com/index.jsp?topic=-2Fcom.nordic.infocenter.sdk5.v11.0.0-2Fbledfu_transport_bleservice.html
https://infocenter.nordicsemi.com/index.jsp?topic=-2Fcom.nordic.infocenter.sdk5.v11.0.0-2Fbledfu_transport_bleservice.html


8.2 Key Features

8.2.1 USB DFU

Code download to RAM or FLASH

Code read back (upload) from RAM or FLASH (Useful for taking firmware backups)

Works with Windows, Linux, macOS and Android.

8.2.2 BLE DFU

Code download to FLASH.

Works with PC and mobile devices with iOS/Android.

Bootloader was written taking into account the following aspects

Usability.

No special driver installation or admin rights should be required.

The update process should be straight forward.

Maintainability

Open source community takes care of PC side tools. For eg: dfu-util is a cross platform tool.

Use Google Chrome's WebUSB to update firmware. Sample implementation

Size

COINES on MCU.

• 

• 

• 

• 

• 

• 

a. 

b. 

• 

a. 

b. 

• 

• 

8.2 Key Features

- 45/61 - CC BY-SA 4.0

https://devanlai.github.io/webdfu/dfu-util/


8.3 Invoking the Bootloader

Hardware.

Turn OFF and ON the board with T2 pressed, blue LED glows indicating that the board switched to bootloader mode.

Software

Write 0x4E494F43 ('N','I','O','C') to MAGIC_LOCATION (0x2003FFF4)

Write 0x0 or 0xF0000 to APP_START_ADDR (0x2003FFF8)

Call NVIC_SystemReset()

Invoke Bootloader from Software 

The same feature can also be used to perform application switch ( 2 or more applications can reside in the same flash memory

at different address locations ). Just write the application start address to APP_START_ADDR instead of bootloader address

• 

a. 

• 

a. 

b. 

c. 

d. 

#define  MAGIC_LOCATION (0x2003FFF4)
#define  APP_START_ADDR (*(uint32_t *)(MAGIC_LOCATION+4)

*((uint32_t *)MAGIC_LOCATION) == 0x4E494F43;
APP_START_ADDR = 0xF0000;
//APP_START_ADDR = 0x0;
NVIC_SystemReset();

e. 

8.3 Invoking the Bootloader

- 46/61 - CC BY-SA 4.0



8.4 Using the Bootloader via USB

Write firmware to Flash memory using following command

dfu-util -a FLASH -D fw.bin -R

Write firmware to RAM memory using following command

dfu-util -a RAM -D fw.bin -R

Read firmware from Flash memory using following command

dfu-util -a FLASH -U fw_bkup.bin

Read firmware from RAM memory using following command

dfu-util -a RAM -U fw_bkup.bin

Read device serial number/ BLE MAC address

dfu-util -l

• 

• 

• 

• 

• 

8.4 Using the Bootloader via USB

- 47/61 - CC BY-SA 4.0



8.5 Using the Bootloader via BLE

PC (Windows/Linux and macOS)

Python script present in following path COINES\v2.6.0\tools\app30-ble-dfu  can use the binary file directly.

Scan for devices to find BLE MAC address using below command

python app30-ble-dfu.py -l

Update firmware by using MAC address obtained in the previous step and firmware BIN file

python app30-ble-dfu.py -d D7:A3:CE:8E:36:14 -f firmware.bin

Android devices \begin{enumerate}[label=\roman*.]

Generate ZIP package using https://pypi.org/project/adafruit-nrfutil/ before using nRF ToolBox for BLE or nRF connect for

mobile.

adafruit-nrfutil dfu genpkg --dev-type 0x0052 --application firmware.bin dfu-package.zip

• 

a. 

• 

b. 

• 

• 

a. 

• 

8.5 Using the Bootloader via BLE

- 48/61 - CC BY-SA 4.0

https://pypi.org/project/adafruit-nrfutil/


9. Updating Bootloader, DD firmware and MTP firmware using COINES

9.1 Updating bootloader

Connect the Application Board 3.0 using USB cable to PC.

Application Board 3.0 comes preloaded bootloader update package.

To update the bootloader run "update_bootloader.bat" file present in the following path 

COINES\v2.6.0\firmware\app3.0\bootloader_update

To go to bootloader mode turn OFF and ON the board with T2 pressed, blue LED glows indicating that the board switched to

bootloader mode.

• 

• 

• 

• 

9. Updating Bootloader, DD firmware and MTP firmware using COINES

- 49/61 - CC BY-SA 4.0



9.2 Updating DD firmware

Connect the Application Board 3.0 using USB cable to PC.

Make sure bootloader is flashed into Application board 3.0

To update the DD firmware run "update_dd_fw.bat" file present in the following path COINES\v2.6.0\firmware\app3.0

• 

• 

• 

9.2 Updating DD firmware

- 50/61 - CC BY-SA 4.0



9.3 Updating MTP firmware

Connect the Application Board 3.0 using USB cable to PC.

Make sure bootloader is flashed into Application board 3.0

To update the MTP firmware run "update_mtp_fw.bat" file present in the following path C:

\COINES\v2.6.0\firmware\app3.0\mtp_fw_update

To switch to the MTP mode, turn OFF and ON the board with T1 pressed, green LED glows indicating that the board switched

to MTP mode.

• 

• 

• 

• 

9.3 Updating MTP firmware

- 51/61 - CC BY-SA 4.0



10. Accessing the Application Board using Python

10.1 Introduction to coinespy  library

The coinespy  library allows users to access the Bosch Sensortec Application Board using Python. 

Control VDD and VDDIO of sensor

Configure SPI and I2C bus parameters

Read and write into registers of sensors from Bosch Sensortec via SPI and I2C

Read and write digital pins of the Application Board

10.2 Installation

The coinespy module can be installed using pip:

Linux users may have to use the below commands due to co-existence of Python 2.7 and Python 3.x

The module can be found on https://pypi.org/project/coinespy/ and also in the COINES installation folder, precisely in the

subfolder coines-api\textbackslash pc\textbackslash python , in which a python wheel package is placed. 

When running a python script and importing coinespy, the underlying ctypes module will try to load the shared library

coineslib.dll (on Windows systems; on Linux systems the lib is called coineslib.so). The search stategy is as follows:

One of the libraries included in the wheel package is checked. There are precompiled libraries available for a certain

combination of operating systems and hardware configurations (e.g. Windows 64-bit, 32-bit, macOS, Linux ARMv7, x86, 64-

bit). Depending on the user's configuration, the user may be lucky and the precompiled library works.

If the user has compiled an own library using COINES, but has installed COINES into another folder than the default folder,

the user can point to the right library inside the python code by initializing the UserApplicationBoard  with the path to the

library:

coinespy.UserApplicationBoard(r'C:\textbackslash PATH\textbackslash TO\textbackslash MY\textbackslash libcoines.dll')

It is highly recommended that the user is testing the following script (can be found as 

examples\textbackslash python\textbackslash coinespy\_test.py  in the COINES installation) to check if the installation was

successful:

• 

• 

• 

• 

pip install coinespy

pip3 install coinespy
python3 -m pip install coinespy

• 

• 

import coinespy as BST

if __name__ == "__main__":

board = BST.UserApplicationBoard()
# If you get an error message on startup, that coineslib could not be loaded, then
# intialize the UserApplicationBoard object with the path to the library, e.g.
#board = BST.UserApplicationBoard(r'C:\COINES\v2.1\coinesAPI\libcoines.dll')

board.PCInterfaceConfig(BST.PCINTERFACE.USB)
if board.ERRORCODE != 0:
print('Could not connect to board: %d' % (board.ERRORCODE))
else:
b_info = board.GetBoardInfo()
print('BoardInfo: HW/SW ID: ' + str(b_info.HardwareId) + '/' + str(b_info.SoftwareId))
board.ClosePCInterface()

10. Accessing the Application Board using Python

- 52/61 - CC BY-SA 4.0

https://pypi.org/project/coinespy/


10.3 coinespy API description

As coinespy is only a wrapper on top of coinesAPI, the following API documentation is limited to the wrapper only. Details about

meaning of variables and functionality can be found in the corresponding coinesAPI documentation in the chapter above.

Note: the streaming functionality (polling or interrupt streaming) is not available through the python interface.

10.4 coinespy API calls: Interface and board information

The following function calls are defined within the class UserApplicationBoard . Thus in order to access the functions, the user has

to create an object of that class first.

10.4.1 PCInterfaceConfig

Sets the communication interface between board and PC to USB or Serial.

For the definition of PCINTERFACE , refer to PCINTERFACE.

10.4.2 ClosePCInterface

Disposes the resources used by the USB/serial communication.

10.4.3 GetBoardInfo

Obtains board specific information.

10.5 coinespy API calls: GPIO oriented calls

10.5.1 PinConfig

Configures the state, level and direction of a GPIO pin

For the definition of EONOFF , refer to EONOFF. For the definition of PINMODE , refer to PINMODE. For PINLEVEL , refer to 

PINLEVEL.

10.5.2 GetPinConfig

Obtains information regarding the Pin's state, level and direction.

coinespy.PCInterfaceConfig(PCINTERFACE communicationChannel, string portName)

coinespy.ClosePCInterface()

BoardInfo = coinespy.BoardInfo = coinespy.GetBoardInfo()

# Return:
BoardInfo.HardwareId # Hardware ID
BoardInfo.SoftwareId # Firmware version information
BoardInfo.Board # Board type
BoardInfo.ShuttleID # ID of shuttle, in case a shuttle is detected

coinespy.PinConfig(int pinNumber, EONOFF switchState, PINMODE direction, PINLEVEL outputState)

PinConfigInfo = coinespy.GetPinConfig(ushort pinNumber)

# Return:
PinConfigInfo.direction # 0: INPUT, 1: OUTPUT
PinConfigInfo.switchState # 0: OFF, 1: ON
PinConfigInfo.level # 1: HIGH, 0: LOW

10.3 coinespy API description

- 53/61 - CC BY-SA 4.0



10.5.3 SetVDD

Set the VDD voltage level.

10.5.4 SetVDDIO

Set the VDDIO voltage level.

10.6 coinespy API calls: Sensor communication

10.6.1 Read

Reads data from the sensor.

The CSB pin shall be given as item from ShuttleBoardPin.

10.6.2 Write

Writes data to a partcular register.

The CSB pin shall be given as item from ShuttleBoardPin.

10.6.3 SensorI2CConfig

Sets the interface to I2C and sets the I2C speed.

For the definition of I2CSPEED , refer to I2CSPEED.

10.6.4 SensorSPIConfig

Set the interface to SPI and sets the SPI speed and mode.

The CSB pin shall be given as item from ShuttleBoardPin.

coinespy.SetVDD(volts)

# Example: coinespy.SetVDD(3.3)

coinespy.SetVDDIO(volts)

# Example: coinespy.SetVDDIO(3.3)

data = coinespy.Read(registerAddress, numberofReads=1, sensorInterfaceDetail=None)

# sensorInterfaceDetail:
#   * SPI configuration: CSB pin (class ShuttleBoardPin)
#   * I2C configuration: i2c address
#   * Can be left empty if only one sensor is on the bus. configured through SensorSPIConfig or SensorI2CConfig

# Return: list of retrieved values as int type.

coinespy.Write(registerAddress, registerValue, sensorInterfaceDetail=None)

# registerValue: either a single value of type int or an array of values to be written to the sensor. The function supports burst write (i.e. in case of more 
than one byte to write, register address is incremented for each following byte). Recommendation is to only write one byte at a time otherwise a long delay 
after the write command has to be considered.

# sensorInterfaceDetail:
#   * SPI configuration: CSB pin (class ShuttleBoardPin)
#   * I2C configuration: i2c address
#   * Can be left empty if only one sensor is on the bus. configured through SensorSPIConfig or SensorI2CConfig

coinespy.SensorI2CConfig(i2cAddress, I2CSPEED speed)

coinespy.SensorSPIConfig(chipSelectPin, SPISPEED spiSpeed=SPISPEED.SPI1000KBIT, SPIMODE spiMode=SPIMODE.MODE0)

10.5.3 SetVDD

- 54/61 - CC BY-SA 4.0



For the definition of SPISPEED , refer to SPISPEED. For the definition of SPIMODE , refer to SPIMODE.

10.6.5 CustomSPIConfig

Configures the SPI and sets the speed and mode. Difference to the SensorSPIConfig  is, that in this function the SPI speed can be

given in a free format. Only available for backward-compatibility with GenericAPI.

The CSB pin shall be given as item from ShuttleBoardPin.

For the definition of SPISPEED , refer to SPISPEED. For the definition of SPIMODE , refer to SPIMODE.

10.6.6 Sensor16bitSPIConfig

Configures SPI for 16-bit read and write.

10.7 Definiton of constants

10.7.1 EONOFF

Defintion of value for ON and OFF.

10.7.2 PINMODE

Definition of value for direction state of the pin. Sets to output or input.

10.7.3 PINLEVEL

Definition of value for pin level status. Either high or low.

10.7.4 PCINTERFACE

Definition to activate the communication channel.\newline

10.7.5 I2CSPEED

Definition of the I2C speed.

coinespy.CustomSPIConfig(sensorId, chipSelectPin, spiSpeed, SPIMODE spiMode=SPIMODE.MODE0)

coinespy.Sensor16bitSPIConfig(chipSelectPin, spiSpeed=60, spiMode=SPIMODE.MODE0, spiBits=SPIBITS.SPI16BIT)

class EONOFF:
OFF = 0
ON = 1

class PINMODE:
INPUT = 0 # COINES_PIN_DIRECTION_IN = 0
OUTPUT = 1

class PINLEVEL:
LOW = 0 # COINES_PIN_VALUE_LOW = 0
HIGH = 1

class PCINTERFACE:
USB = 0 # COINES_COMM_INTF_USB
SERIAL = 1 # COINES_COMM_INTF_VCOM

class I2CSPEED:
STANDARDMODE = 0 # Standard mode - 100kHz
FASTMODE = 1 # Fast mode - 400kHz

10.6.5 CustomSPIConfig

- 55/61 - CC BY-SA 4.0



10.7.6 SPISPEED

SPI speed definition.

10.7.7 SPIBITS

SPI register access width.

10.7.8 SPIMODE

SPI MODE definition.

10.7.9 ShuttleBoardPin

Definiton of pins on the shuttle board which can be used as general purpose input/output pins.

HSMODE = 2 # High Speed mode - 3.4 MHz
HSMODE2 = 3 # High Speed mode 2 - 1.7 MHz

class SPISPEED:
SPI250KBIT = 240 # COINES_SPI_SPEED_250_KHZ = 240 - 250 kHz */
SPI300KBIT = 200
SPI400KBIT = 150
SPI500KBIT = 120
SPI600KBIT = 100
SPI750KBIT = 80
SPI1000KBIT = 60
SPI1200KBIT = 50
SPI1250KBIT = 48
SPI1500KBIT = 40
SPI2000KBIT = 30
SPI2500KBIT = 24
SPI3000KBIT = 20
SPI3750KBIT = 16
SPI5000KBIT = 12
SPI6000KBIT = 10
SPI7500KBIT = 8
SPI10000KBIT = 6

class SPIBITS:
SPI8BIT = 8 # 8 bit register read/write
SPI16BIT = 16 # 16 bit register read/write

class SPIMODE:
MODE0 = 0 # SPI Mode 0: CPOL=0; CPHA=0
MODE1 = 1 # SPI Mode 1: CPOL=0; CPHA=1
MODE2 = 2 # SPI Mode 2: CPOL=1; CPHA=0
MODE3 = 3 # SPI Mode 3: CPOL=1; CPHA=1

class ShuttleBoardPin:
COINES_SHUTTLE_PIN_7 = 9 # CS pin
COINES_SHUTTLE_PIN_8 = 5 # Multi-IO 5
COINES_SHUTTLE_PIN_9 = 0 # Multi-IO 0
COINES_SHUTTLE_PIN_14 = 1 # Multi-IO 1
COINES_SHUTTLE_PIN_15 = 2 # Multi-IO 2
COINES_SHUTTLE_PIN_16 = 3 # Multi-IO 3
COINES_SHUTTLE_PIN_19 = 8 # Multi-IO 8
COINES_SHUTTLE_PIN_20 = 6 # Multi-IO 6
COINES_SHUTTLE_PIN_21 = 7 # Multi-IO 7
COINES_SHUTTLE_PIN_22 = 4 # Multi-IO 4

# APP3.0 pins
COINES_MINI_SHUTTLE_PIN_1_4 = 0x10 # GPIO0
COINES_MINI_SHUTTLE_PIN_1_5 = 0x11 # GPIO1
COINES_MINI_SHUTTLE_PIN_1_6 = 0x12 # GPIO2/INT1
COINES_MINI_SHUTTLE_PIN_1_7 = 0x13 # GPIO3/INT2
COINES_MINI_SHUTTLE_PIN_2_5 = 0x14 # GPIO4
COINES_MINI_SHUTTLE_PIN_2_6 = 0x15 # GPIO5
COINES_MINI_SHUTTLE_PIN_2_1 = 0x16 # CS
COINES_MINI_SHUTTLE_PIN_2_3 = 0x17 # SDO

10.7.6 SPISPEED

- 56/61 - CC BY-SA 4.0



10.7.10 MULTIIO

Definiton of pins on the shuttle board which can be used as general purpose input/output pins (these definitions are only for

backward compatibilty, please use those definitions as stated in ShuttleBoardPin).

10.8 Error Codes

Error codes are not (always) returned by the different function calls. Internally, a ERRORCODE  variable is maintained which is

updated after the function call. It can be read out and checked by the user afterwards. Example:

10.8.1 General Error Codes

10.8.2 Pinconfig Specific Error Codes

class MULTIIO:
MULTIIO_0 = 0
MULTIIO_1 = 1
MULTIIO_2 = 2
MULTIIO_3 = 3
MULTIIO_4 = 4
MULTIIO_5 = 5
MULTIIO_6 = 6
MULTIIO_7 = 7
MULTIIO_8 = 8

# Old style naming for APP3.0 pins
class GPIO:

GPIO_0 = 0x10
GPIO_1 = 0x11
GPIO_2 = 0x12
GPIO_3 = 0x13
GPIO_4 = 0x14
GPIO_5 = 0x15

BOARD = coinespy.UserApplicationBoard()
try:

BOARD.PCInterfaceConfig(PCINTERFACE.USB)
except:

print('Board initialization failed: ' + str(BOARD.ERRORCODE))
exit(BOARD.ERRORCODE)

Error Values Description

0 No Error response/Success

-1 Failure

-2 Length Error

-4 Configuration is Unsuccessful

-5 Invalid Instruction

-6 Memory Error

-100 Timeout

Error Values Description

1 Analog Switch is turned ON/OFF

-10 Invalid Pin

-19 Invalid ADC Pin

10.7.10 MULTIIO

- 57/61 - CC BY-SA 4.0



10.8.3 Read/Write Specific Error Codes

10.9 Migration from 'GenericAPI' to coinespy

The attempt was undertaken to keep the names of functions, constants and variables as close as possible to the GenericAPI. To

migrate to coinespy, the user should only need to remove the .NET related library (i.e. import clr ) and import coinespy as BST,

as shown in the example files.

Old code may still contain some type conversions which are not necessary anymore. To avoid errors, the user could either modify

the code or simply add these lines to his code (at the top of the file):

Error

Values

Description

2 Default read of 128 bytes is done. Requested bytes of read not supported. For APP2.0 board read more than

128 bytes is possible and up to 1204 bytes

-3 The number of bytes that shall be read is 2kB. If this exceeds, error code is updated.

-18 For APP2.0 the maximum number of bytes that shall be written for burst operation is 2kB based on RAM

requirements. For AB/DB, due to RAM size the maximum number of bytes that shall be written for burst

operation is 46 bytes.

def Byte(value):
return value

def UInt16(value):
return value

def Array(value):
return value

10.8.3 Read/Write Specific Error Codes

- 58/61 - CC BY-SA 4.0



11. FAQ

11.1 I want to upgrade APP2.0/APP3.0 firmware.

Use app20-flash  tool (or) Development Desktop to upgrade APP2.0 firmware.

Use dfu-util  tool to upgrade APP3.0 firmware.

11.2 Why GCC is chosen as the compiler?

GCC is widely used and available in both Linux and Windows environments. However, if the user uses a different compiler, it

should be easy to migrate the code, since no compiler-specific tweaks are needed.

11.3 Why do you use TDM-GCC in Windows?

It is a complete toolchain in a single installer, but does not come with too much overhead the COINES user most likely does not

need. The installation procedures for other toolchains are more complicated and especially for in-experienced users difficult to

handle.

11.4 Why do you use mingw32-make in Windows?

It comes as a part of TDM-GCC package and can handle Windows path names better compared e.g. with MSYS make. The usage

of spaces in path names can be overcome using 8.3 naming format.

11.5 What to do in case of any communication or initialization failure while running examples?

Resetting or rebooting the board will help solving this 

11.6 What does 'app_switch' tool do?

'app_switch' tool can command the Application Board to jump to a specified address on RAM or FLASH. It works only with

APP2.0 firmware v3.1 or later. COINES uses this feature to jump to USB DFU Bootloader or example application.

11.7 Are libraries provided by microcontroller vendor used for COINES on MCU implementation ?

Yes ! ASF v3.42 (Advanced Software Framework) and nRF5 SDK v15.2 is being used for APP2.0 and APP3.0. One can download

the latest version of libraries from the below links

https://www.microchip.com/mplab/avr-support/advanced-software-framework

https://developer.nordicsemi.com/nRF5_SDK/

11.8 How is the binary file from PC downloaded to RAM or Flash memory of MCU?

USB DFU protocol and open-source 'dfu-util' is used.

USB DFU Specification

dfu-util Homepage

• 

• 

• 

• 

• 

• 

11. FAQ

- 59/61 - CC BY-SA 4.0

https://www.microchip.com/mplab/avr-support/advanced-software-framework
https://developer.nordicsemi.com/nRF5_SDK/
https://www.usb.org/sites/default/files/DFU_1.1.pdf
http://dfu-util.sourceforge.net/


11.9 Why is there no output in my terminal application not stream data after cross-compiling and

downloading an example on the MCU?

The code example on the MCU waits until the serial port of the board is opened. However, opening the port is not enough, the

user has to ensure that also the DTR signal is set (this is required due to have higher compatibiliy among different terminal

applications).

11.10 Why some examples can only be compiled for either PC or MCU target?

Examples which make use of APIs like coines_config_streaming , coines_read_stream_sensor_data  etc., are meant to work only on

PC.

Use of APIs like coines_attach_interrupt  in example will make it only compatible with MCU. 

Constraints can also be introduced by the use of POSIX C library. Eg:Functions from time.h , pthread.h , etc .,

• 

• 

• 

11.9 Why is there no output in my terminal application not stream data after cross-compiling and downloading an example on the MCU?

- 60/61 - CC BY-SA 4.0



12. Legal disclaimer

12.1 Engineering samples

Engineering Samples are marked with an asterisk (*), (E) or (e). Samples may vary from the valid technical specifications of the

product series contained in this data sheet. They are therefore not intended or fit for resale to third parties or for use in end

products. Their sole purpose is internal client testing. The testing of an engineering sample may in no way replace the testing of

a product series. Bosch Sensortec assumes no liability for the use of engineering samples. The Purchaser shall indemnify Bosch

Sensortec from all claims arising from the use of engineering samples.

12.2 Product use

Bosch Sensortec products are developed for the consumer goods industry. They may only be used within the parameters of this

product data sheet. They are not fit for use in life-sustaining or safety-critical systems. Safety-critical systems are those for which

a malfunction is expected to lead to bodily harm, death or severe property damage. In addition, they shall not be used directly or

indirectly for military purposes (including but not limited to nuclear, chemical or biological proliferation of weapons or

development of missile technology), nuclear power, deep sea or space applications (including but not limited to satellite

technology).

The resale and/or use of Bosch Sensortec products are at the purchaser’s own risk and his own responsibility. The examination of

fitness for the intended use is the sole responsibility of the purchaser. 

The purchaser shall indemnify Bosch Sensortec from all third party claims arising from any product use not covered by the

parameters of this product data sheet or not approved by Bosch Sensortec and reimburse Bosch Sensortec for all costs in

connection with such claims.

The purchaser accepts the responsibility to monitor the market for the purchased products, particularly with regard to product

safety, and to inform Bosch Sensortec without delay of all safety-critical incidents.

12.3 Application examples and hints

With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the

application of the device, Bosch Sensortec hereby disclaims any and all warranties and liabilities of any kind, including without

limitation warranties of non-infringement of intellectual property rights or copyrights of any third party. The information given in

this document shall in no event be regarded as a guarantee of conditions or characteristics. They are provided for illustrative

purposes only and no evaluation regarding infringement of intellectual property rights or copyrights or regarding functionality,

performance or error has been made.

12. Legal disclaimer

- 61/61 - CC BY-SA 4.0


	COINES Documentation
	1. Introduction
	2. Acessing the sensor on Application Board using C and SensorAPI
	2.1 Introduction to COINES
	2.2 Working Principles
	2.2.1 Running examples on PC side
	2.2.2 Running examples directly on the MCU of the Application board


	3. Installation
	3.1 System requirements
	3.2 Installation (Windows)
	3.2.1 Installation of COINES
	3.2.2 Installation of compiler environment

	3.3 Installation (Linux / MacOS)
	3.3.1 Installation of COINES
	3.3.2 Installation of compiler environment


	4. Quickstart
	4.1 Compiling and executing code (command line)
	4.2 Cross compiling and downloading example to Application Board's microcontroller
	4.3 Eclipse project for examples
	4.3.1 Build project
	4.3.2 Debug project


	5. coinesAPI description
	5.1 Overview of PC side implementation of COINES
	5.2 GPIO Mapping
	5.2.1 GPIO mapping of APP2.0 shuttle board pins
	5.2.2 GPIO mapping of APP3.0 shuttle board pins

	5.3 coinesAPI calls
	5.3.1 coinesAPI calls: Interface and board information
	coines_open_comm_intf
	coines_close_comm_intf
	coines_get_board_info

	5.3.2 coinesAPI calls: GPIO oriented calls
	coines_set_pin_config
	coines_get_pin_config
	coines_set_shuttleboard_vdd_vddio_config

	5.3.3 coinesAPI calls: Sensor communication
	coines_config_i2c_bus
	coines_config_spi_bus
	coines_config_i2s_bus
	coines_deconfig_spi_bus
	coines_deconfig_i2c_bus
	coines_deconfig_i2s_bus
	coines_write_i2c
	coines_read_i2c
	coines_write_spi
	coines_read_spi
	coines_config_word_spi_bus
	coines_write_16bit_spi
	coines_read_16bit_spi
	coines_delay_msec
	coines_delay_usec

	5.3.4 coinesAPI calls: Streaming feature
	coines_config_streaming
	coines_start_stop_streaming
	coines_read_stream_sensor_data
	coines_trigger_timer

	5.3.5 coinesAPI calls: Other useful APIs
	coines_get_millis
	coines_get_micro_sec
	coines_attach_interrupt
	coines_detach_interrupt
	coines_intf_available
	coines_intf_connected
	coines_flush_intf
	coines_read_intf
	coines_write_intf
	coines_get_version
	coines_soft_reset
	coines_read_temp_data
	coines_read_bat_status
	coines_ble_config
	coines_set_led
	coines_timer_config
	coines_timer_start
	coines_timer_stop
	coines_get_realtime_usec
	coines_delay_realtime_usec



	6. Extending the usage of the example files
	6.1 Simple data logging
	6.2 Data plotting and visualization

	7. Media Transfer Protocol (MTP) firmware for Application Board 3.0
	7.1 Media Transfer Protocol (MTP) firmware for Application Board 3.0
	7.2 Switching to MTP mode
	7.3 Copying the files using MTP

	8. USB/BLE DFU bootloader
	8.1 USB/BLE DFU bootloader
	8.2 Key Features
	8.2.1 USB DFU
	8.2.2 BLE DFU

	8.3 Invoking the Bootloader
	8.4 Using the Bootloader via USB
	8.5 Using the Bootloader via BLE

	9. Updating Bootloader, DD firmware and MTP firmware using COINES
	9.1 Updating bootloader
	9.2 Updating DD firmware
	9.3 Updating MTP firmware

	10. Accessing the Application Board using Python
	10.1 Introduction to coinespy library
	10.2 Installation
	10.3 coinespy API description
	10.4 coinespy API calls: Interface and board information
	10.4.1 PCInterfaceConfig
	10.4.2 ClosePCInterface
	10.4.3 GetBoardInfo

	10.5 coinespy API calls: GPIO oriented calls
	10.5.1 PinConfig
	10.5.2 GetPinConfig
	10.5.3 SetVDD
	10.5.4 SetVDDIO

	10.6 coinespy API calls: Sensor communication
	10.6.1 Read
	10.6.2 Write
	10.6.3 SensorI2CConfig
	10.6.4 SensorSPIConfig
	10.6.5 CustomSPIConfig
	10.6.6 Sensor16bitSPIConfig

	10.7 Definiton of constants
	10.7.1 EONOFF
	10.7.2 PINMODE
	10.7.3 PINLEVEL
	10.7.4 PCINTERFACE
	10.7.5 I2CSPEED
	10.7.6 SPISPEED
	10.7.7 SPIBITS
	10.7.8 SPIMODE
	10.7.9 ShuttleBoardPin
	10.7.10 MULTIIO

	10.8 Error Codes
	10.8.1 General Error Codes
	10.8.2 Pinconfig Specific Error Codes
	10.8.3 Read/Write Specific Error Codes

	10.9 Migration from 'GenericAPI' to coinespy

	11. FAQ
	11.1 I want to upgrade APP2.0/APP3.0 firmware.
	11.2 Why GCC is chosen as the compiler?
	11.3 Why do you use TDM-GCC in Windows?
	11.4 Why do you use mingw32-make in Windows?
	11.5 What to do in case of any communication or initialization failure while running examples?
	11.6 What does 'app_switch' tool do?
	11.7 Are libraries provided by microcontroller vendor used for COINES on MCU implementation ?
	11.8 How is the binary file from PC downloaded to RAM or Flash memory of MCU?
	11.9 Why is there no output in my terminal application not stream data after cross-compiling and downloading an example on the MCU?
	11.10 Why some examples can only be compiled for either PC or MCU target?

	12. Legal disclaimer
	12.1 Engineering samples
	12.2 Product use
	12.3 Application examples and hints


